

School of Bioinnovation and Bio-based Product Intelligence (SCIN)

Program in Bioinnovation (International Program, Multidisciplinary Program)

Degree	V	Bachelor	Master		Doctoral
			Faculty	<i>'</i> 0	f Science

Course: SCIN 171 Modelling and Simulation

Course Code and Course Title	English SCIN 171 Modelling and Simulation					
	Thai <mark>วทนว 171 การสร้างแบบจำลองและการจำลองส</mark> ถานการณ์					
Number of Credits	2 (2-0-4)					
Curriculum and Course Type	Program of Study Bachelor's Degree Program in Science and Technology					
	(International Program, Multidisciplinary Program)					
	Course Type Specific Courses					
Course Coordinator	Asst.Prof. Somkid Amornsamankul, Ph.D					
	Address: Department of Mathematics,					
	Faculty of Science, Mahidol University					
	Tel: (66) 02-201-5339 email: somkid.amo@mahidol.ac.th					
Semester/Year of Study	Academic Year 2020 First Semester (1/2020) / First Year					
Prerequisite	None					
Co-requisite None						
Day/Time/Study Site Location	Wendesday / 10:00AM-12:00PM / Online					
	Faculty of Science, Mahidol University, Salaya Campus					
Date of Latest Revision	13 July 2021					

Course Learning Outcomes (CLOs)

After successful completion of this course, students are able to

- 1) CLO1 model deterministic systems and differentiate between nonlinear and linear models.
- CLO2 numerically simulate linear and non-linear ordinary differential equations and deterministic systems.
- 3) CLO3 estimate and validate a model based upon input and output data.
- 4) CLO4 create a model prediction based upon new input and validate the output data.
- 5) CLO5 comprehend and apply theory-based understanding of fundamentals of knowledge in the selected discipline area to predict the effect of activities.
- 6) CLO6 apply natural, physical and biological sciences, mathematics, statistics, computer and information sciences to applications

1.

Course Description

Modelling and simulation concepts. Real world and model world. Continuous, and discrete models. Computational simulation. Monte Carlo method. Numerical methods, Visualization and analysis of simulation results.

Credit Hours / Trimester

Theory	Addition Class	Laboratory/Field trip/	Self-study	
(Hours) (Hours)		Internship (Hours)	(Hours)	
30 Hours/Semester	-	-	60 Hours/Semester	
(2 Hours x 15 Weeks)			(4 Hours x 15 Weeks)	

School of Bioinnovation and Bio-based Product Intelligence (SCIN)

Program in Bioinnovation (International Program, Multidisciplinary Program)

Degree	\checkmark	Bachelor	Master		Doctora
			Faculty	<i>,</i> 0	f Science

Course: SCIN 171 Modelling and Simulation

Number of Hours per Week for Individual Advice

2 hours per week or student requirement during prescribed date and time

Evaluation of the CLOs

	Course Learning Outcomes	Evaluat	Evaluation Strategies			
		Class Attendance, Participation and Behavior in Class	Written Exam	Class Project Executed without Plagiarism	(%)	
CLO1	model deterministic systems and differentiate between nonlinear and linear models.	<mark>2%</mark>	-	<mark>10%</mark>	<mark>12%</mark>	
CLO2	numerically simulate linear and non-linear ordinary differential equations and deterministic systems.	<mark>2%</mark>	<mark>20%</mark>	<mark>10%</mark>	<mark>32%</mark>	
CLO3	estimate and validate a model based upon input and output data.	<mark>2%</mark>	<mark>10%</mark>	-	12%	
CLO4	create a model prediction based upon new input and validate the output data.	<mark>2%</mark>	-	<mark>10%</mark>	<mark>12%</mark>	
CLO5	comprehend and apply theory-based understanding of fundamentals of knowledge in the selected discipline area to predict the effect of activities.	<mark>2%</mark>	<mark>10%</mark>	10%	<mark>22%</mark>	
CLO6	apply natural, physical and biological sciences, mathematics, statistics, computer and information sciences to applications	-	-	<mark>10%</mark>	<mark>10%</mark>	
	<mark>Total</mark>	<mark>10%</mark>	<mark>40%</mark>	<mark>50%</mark>	<mark>100%</mark>	

Measurement and evaluation

After completion of the evaluation process each student is assigned a criterion-referenced grade (as shown in the table below). Evaluation and achievement will be justifying according to Faculty and University code, conducted by grading system of A, B+, B, C+, C, D and F. To pass this course, student must earn a grade of a least D.

Total Percentage of Evaluation	Below	<mark>/ 20</mark>	<mark>20-29.99</mark>	<mark>30-39.99</mark>	<mark>40-49.99</mark>	<mark>50-59.99</mark>	<mark>60-69.99</mark>	<mark>70-79.99</mark>	<mark>80-100</mark>
Grade	F		<mark>D</mark>	D+	C	C+	B	<mark>B+</mark>	<mark>A</mark>

Teaching staff:

Code	Name	Email			
<mark>SA</mark>	Somkid Amornsamankul	somkid.amo@mahidol.ac.th			
	M 210, M. Bld. (MUSC-Phayathai)				

School of Bioinnovation and Bio-based Product Intelligence (SCIN)

Program in Bioinnovation (International Program, Multidisciplinary Program)

Degree ☑ Bachelor	Master		Doctoral
	Faculty	/ O	f Science

Course: SCIN 171 Modelling and Simulation

Teaching Schedule 1st Semester of Academic Year 2020

Wednesday 10:00AM-12:00PM, Online, and Faculty of Science, Mahidol University, Salaya Campus

Week	D-4-	Tania	Numbe	r of Hours	Instructor				
vveek	Date	Торіс	Lecture	Laboratory	Instructor				
1	11 Aug 2021	Introduction of course discipline and class orientation,	<mark>2</mark>	0	Asst. Prof. Somkid				
		What is Modelling? What is simulation?			<mark>Amornsamankul</mark>				
<mark>2</mark>	18 Aug 2021	What is Modelling? What is simulation?	<mark>2</mark>	<mark>o</mark>	<mark>Asst. Prof. Somkid</mark>				
					<mark>Amornsamankul</mark>				
<mark>3</mark>	<mark>25 Aug 2021</mark>	Real world vs. model world	<mark>2</mark>	<mark>0</mark>	<mark>Asst. Prof. Somkid</mark>				
					<mark>Amornsamankul</mark>				
<mark>4</mark>	<mark>1 Sep 2021</mark>	Real world vs. model world	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
					<mark>Amornsamankul</mark>				
<mark>5</mark>	<mark>8 Sep 2021</mark>	Continuous, and discrete models	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
					Amornsamankul Amornsamankul				
<mark>6</mark>	<mark>15 Sep 2021</mark>	Continuous, and discrete models	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
					Amornsamankul				
<mark>7</mark>	<mark>22 Sep 2021</mark>	Computational simulation	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
					Amornsamankul				
8	<mark>29 Sep 2021</mark>	Computational simulation	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
					<mark>Amornsamankul</mark>				
	I	Midterm Examination (4 to 8 Oct 202	1)						
9	13 Oct 2021	Computational simulation	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
			_		Amornsamankul				
<mark>10</mark>	20 Oct 2021	Monte Carlo method	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
4.4	07.0.1.0004			0	Amornsamankul				
<mark>11</mark>	<mark>27 Oct 2021</mark>	Monte Carlo method	<mark>2</mark>	<mark>0</mark>	Asst. Prof. Somkid				
40	2 Nov 2024	N	0	0	Amornsamankul				
<mark>12</mark>	3 Nov 2021	Numerical methods	2	<mark>0</mark>	Asst. Prof. Somkid Amornsamankul				
13	10 Nov 2021	Numerical methods & visualization	<u>2</u>	0	Asst. Prof. Somkid				
13	10 1400 2021	Numerical methods & visualization	<mark>∠</mark>	<mark>U</mark>	Amornsamankul				
	17 Nov 2021	Analyses of simulation results		0	Asst. Prof. Somkid				
14	17 INOV 2021	Anatyses of simulation results	<u> </u>	<mark>0</mark>	Amornsamankul				
	24 Nov 2021	Analyses of simulation results		0	Asst. Prof. Somkid				
10	24 1400 2021	Analyses of simulation results	<u>~</u>	<mark>0</mark>	Amornsamankul				
		Final Evamination (20 Nov to 40 Dec 20	21)		A HOHISAHIAHKUI				
	Final Examination (29 Nov to 10 Dec 2021)								