Course Syllabus

1. Faculty/Institute/College Department of Mathematics,

Faculty of Science, Mahidol University

- 2. Course Code SCMA 101
 - Course Title Mathematics I
- 3. Number of Credits 2 (2-0-4) credits
- 4. Prerequisite None
- 5. Type of Course Specific Courses
- 6. Session/Academic year First semester, 2021
- 7. Course Conditions
- 8. Course Description

Functions; limits; continuity; derivatives of algebraic functions, logarithmic functions, exponential functions and trigonometric functions; implicit differentiation; higher-order derivatives; differentials; applications of differentiation; indeterminate forms and l' Hospital's rule; functions of several variables and partial derivatives; total differentials and total derivatives; antiderivatives and integration; techniques of integration; applications of integration

9. Course Objectives

Instructor expects students to acquire skills and knowledge as follows. Students should:

- 1) Demonstrate understanding of fundamental knowledge of calculus
- 2) Be able to calculate and use derivatives and integrals to solve assigned problems
- 3) Know various applications of the derivative and the integration.

Course-level learning outcomes: CLOs

After successful completion of this course, students should be able to:

- 1) CLO1 Explain fundamental knowledge of calculus such as limits, continuity, derivatives and integration.
- 2) CLO2 Evaluate limits, derivatives, and integrals by multiple methods.
- 3) CLO3 Apply calculus to real-world problems.
- 4) CLO4 Demonstrate abilities to study and work both independently and collaboratively.

10. Course Outline

	Date		Number of			
Å		Topica	hours			
We		Topics	In-class	Lab	Instructors	
			activity			
1	10 Aug	Functions and limits	2	0		
2	17 Aug	Continuity and derivatives	nd derivatives 2 0			
3	24 Aug	Differentiation formulas	2 0			
4	31 Aug	Chain rule and power rule	0			
5	7 Sep	Derivatives of transcendental functions	2	0	VVJ	
6	14 Sep	Implicit differentiation, higher-order derivatives,	0	0		
		differentials	Ζ			
7	21 Sep	applications of differentiation	2 0			
8	28 Sep	Indeterminate forms and l' Hospital's rule	2	0		
9	4-8 Oct	Midterm examination				
10	12 Oct	Functions of several variables, partial derivatives,	2	0		
		total differentials, total derivatives	Z			
11	19 Oct	19 Oct Antiderivatives and indefinite integration		0		
12	26 Oct Integrations		2	0	WJ	
13	2 Nov Integration by parts		2	0		
14	9 Nov	2	0			
15	16 Nov	2	0			
16	23 Nov	Applications of integration	ations of integration 2 0			
17	29 Nov-10 Dec	Final examination				
		Total	30	0		

11. Summative assessment

Course learning	Evaluation methods					
outcomes	Assignments	Quizzes	Q&A	Group Project	Exams	Weight
CLO1	3%	2%	-	-	5%	10%
CLO2	10%	8%	-	-	37%	55%
CLO3	2%	-	-	10%	8%	20%
CLO4	-	-	10%	5%	-	15%
Total	15%	10%	10%	15%	50%	100%

(1) Evaluation methods and weight

(2) Grading system

After completion of the evaluation process each student is assigned a criterionreferenced grade (as shown in the table below). Evaluation and achievement will be justify according to Faculty and University code, conducted by grading system of A, B+, B, C+, C, D+, D and F.

Total percentage of evaluation	Grade		
80-100	А		
75 – 79	B+		
70 – 74	В		
65 – 69	C+		
60 - 64	С		
55 – 59	D+		
50 – 54	D		
0 – 49	F		

To pass this course, student must earn a grade of at least D.

12. References

12.1 Textbooks and required documents

- 1) Anton H, Bivens I, Davis S. Calculus. 10th ed., New York: Wiley; 2012.
- 2) Lecture Note

12.2 Suggested Materials

1) James Stewart, Calculus: Early Transcendentals. 8th ed., Brooks Cole; 2015

13. Instructor

Dr. Watthanan Jatuviriyapornchai Department of Mathematics, Faculty of Science, Mahidol University Phone: 0-2201-5356 Email: watthanan.jat@mahidol.ac.th

14. Time table: Tuesday 13.30-15.30
