

Degree ☑ Bachelor ☐] Master \square Doctoral
	Faculty of Science

Course: SCIN 295 Basic Engineering for Innovator

Course Code and Course Title	English SCIN 295 Basic Engineering for Innovator
	Thai วทนว ๒๙๕ วิศวกรรมพื้นฐานสำหรับนวัตกร
Number of Credits	3 (2-2-5)
Curriculum and Course Type	Program of Study Bachelor's Degree Program in Science and Technology
	(International Program, Multidisciplinary Program)
	Course Type Core course
Course Coordinator	Thitisilp Kijchavengkul, Ph.D.
	Address: School of Bioinnovation and Bio-based Intelligence,
	Room SC1-306 Faculty of Science Building 1,
	Mahidol University, Salaya Campus
	Tel: 090-986-5764 email: <u>thitisilp.kij@mahidol.edu</u>
Semester/Year of Study	Academic Year 2021 Second Semester (2/2021) / Second Year
Prerequisite	None
Co-requisite	None
Day/Time/Study Site Location	Tuesday / 13.00 – 17.00 / Room SC1-159
	Faculty of Science, Mahidol University, Salaya Campus and online
Google Classroom link	https://classroom.google.com/c/NDQ2NjgzMjAxNDQz?cjc=gldolsz
Google Classroom Code	gldolsz
Date of Latest Revision	15 December 2021

Course Learning Outcomes (CLOs)

After successful completion of this course, students are able to

- 1. Exhibit code of ethics for engineers, especially holding paramount the safety, health, and welfare of the public, in classroom and during practice
- 2. Describe basic theories of engineering as well as fundamentals and tools related to engineering drawing, prototype production, Industrial scale product processes, and statistical process control

Perform basic technical skills in engineering drawing manually and using comput-er software, and in prototype production using 3D printer with correct scale, measurement, and dimension

Objectives of Development / Revision

By the end of the course, students should have basic knowledge and sufficient basic skills about engineering, including engineering drawing, prototype production, industrial scale product processes, and statistical process control, as well as understanding about code of ethics for engineers according to National Society of Professional Engineers (NSPE).

School of Bioinnovation and Bio-based Product Intelligence (SCIN)

Program in Bioinnovation (International Program, Multidisciplinary Program)

Course: SCIN 295 Basic Engineering for Innovator

Degree 🔽	Bachelor	\square Master	☐ Doctoral
		Facult	y of Science

Course Description

An introduction to engineering and its relationship with science; code of ethics for engineers; basic engineering drawing; the 2-dimension computer-aided design; the 3-dimension computer-aided design; the design validation; the prototype production; industrial scale product processes; the statis-tical process control

Credit Hours / Trimester

Theory (Hours)	Addition Class (Hours)	Laboratory/Field trip/ Internship (Hours)	Self-study (Hours)
30 Hours/Semester	-	30 Hours/Semester	75 Hours/Semester
(2 Hours x 15 Weeks)		(2 Hours x 15 Weeks)	(5 Hours x 15 Weeks)

Number of Hours per Week for Individual Advice

At least 1 hour / week on a designated date and time or by appointment according to student requirement. Students can contact the instructors by email which will be responded during the office hour.

Evaluation of the CLOs

				Me	easureme	nt Meth	nod				
Learning Outcomes		Student observation in class	and during practices	Written examination	Quizzes	Quality of weekly individual	class assignments using Rubrics	Quality of weekly individual	practice assignments using	Rubrics	Weight (Percentage)
CLO1:	Exhibit code of ethics	5	i			5			5		15
	for engineers, especially										
	holding paramount the										
	safety, health, and										
	welfare of the public, in										
	classroom and during										
	practice										
CLO2:	Describe basic theories			25	5	10)				40
	of engineering as well as										

Degree $lacktriangle$ Bachelor \Box	Master \square Doctoral
	Faculty of Science

Course: SCIN 295 Basic Engineering for Innovator

fundamentals and tools related to engineering drawing, prototype production, Industrial scale product processes, and statistical process control CLO3: Perform basic technical	5	10	5		25	45
skills in engineering	, ,	10	,		Z J	4-2
drawing manually and						
using computer						
software, and in						
prototype production						
using 3D printer with						
correct scale,						
measurement and						
dimension						
Total	10%	35%	10%	15%	30%	100%

Measurement and evaluation

After completion of the evaluation process each student is assigned a criterion-referenced grade (as shown in the table below). Evaluation and achievement will be justifying according to Faculty and University code, conducted by grading system of A, B+, B, C+, C, D and F. To pass this course, student must earn a grade of a least D.

Total Percentage	Below 20	20-29	30-39	40-49	50-59	60-69	70-79	80-100
of Evaluation								
Grade	F	D	D+	С	C+	В	B+	А

Degree 🗹	Bachelor	Master	☐ Doctoral
		Facult	y of Science

Course: SCIN 295 Basic Engineering for Innovator

Teaching Schedule 2nd Semester of Academic Year 2021

Week	Data	Tonic	Numbe	er of Hours	Instructor
vveek	Date	Topic	Lecture	Laboratory	Instructor
1	4 Jan 22	Class introduction	2	2	Thitisilp Kijchavengkul,
		Introduction to engineering and its relationship to			Ph.D.
		science			
		Code of ethics for engineers			
2	11 Jan 22	Basic engineering drawing	2	2	Thitisilp Kijchavengkul,
		Lecture: Basic for sketching, lettering, and symbols			Ph.D.
		Practice: Lettering skill			
3	18 Jan 22	Basic engineering drawing	2	2	Thitisilp Kijchavengkul,
		Lecture: Basic for drafting equipment and supplies			Ph.D.
		Practice: Manual drawing of equipment			
4	25 Jan 22	Basic engineering drawing	2	2	Thitisilp Kijchavengkul,
		Lecture: Basic drawing projection			Ph.D.
		Practice: Isometric/Oblique manual drawing skill			
5	1 Feb 22	Basic engineering drawing	2	2	Thitisilp Kijchavengkul,
		Lecture: Descriptive geometry 1			Ph.D.
		Practice: Descriptive geometry manual drawing			
		skill 1			
6	8 Feb 22	Basic engineering drawing	2	2	Thitisilp Kijchavengkul,
		Lecture: Descriptive geometry 2			Ph.D.
		Practice: Descriptive geometry manual drawing			
		skill 2			
7	15 Feb 22	Computer-aided design	2	2	Thitisilp Kijchavengkul,
		Lecture: Basic CAD			Ph.D.
		Practice: Practice of 2D CAD drawing skill			
8	22 Feb 22	Computer-aided design	2	2	Thitisilp Kijchavengkul,
		Lecture: 3D CAD			Ph.D.
		Practice: Practice of 3D CAD drawing skill			
		Midterm examination (28 Feb – 4		1	T
9	8 Mar 22	Design validation	2	2	Thitisilp Kijchavengkul,
					Ph.D.
10	15 Mar 22	Prototype production	2	2	Thitisilp Kijchavengkul,
		Lecture: Different process-es for prototype			Ph.D.
		production			
		Practice: Practice of using 3D CAD on 3D printer			
11	22 Mar 22	Industrial scale product processes	2	2	Thitisilp Kijchavengkul,
		- Batch			Ph.D.
		- Continuous			
	00	Practice: Design of production process	-	_	
12	29 Mar 22	Statistical process control	2	2	Thitisilp Kijchavengkul,
	_ ,	Lecture/Practice: Statistics for Engineering			Ph.D.
13	5 Apr 22	Statistical process control	2	2	Thitisilp Kijchavengkul,
		Lecture: Qualitative quality control			Ph.D.

Degree ☑ Bachelor ☐ Master	☐ Doctoral
Facult	y of Science

Course: SCIN 295 Basic Engineering for Innovator

		Practice: Production sampling and calculation			
		and construction of qualitative control chart			
14	19 Apr 22	Statistical process control	2	2	Thitisilp Kijchavengkul,
		Lecture: Quantitative quality control			Ph.D.
		Practice: Production sampling and calculation			
		and construction of quantitative control chart			
15	26 Apr 22	Statistical process control	2	2	Thitisilp Kijchavengkul,
		Lecture: Process capability, effectiveness, and			Ph.D.
		efficiency			
		Practice: Calculation of process capability,			
		effectiveness, and efficiency			
		Final examination (2 – 13 Ma	y, 2022)		