

Degree ☑ Bachelor □ Master □ Doctoral Faculty of Science

School of Bioinnovation and Bio-based Product Intelligence (SCIN) Program in Bioinnovation (International Program, Multidisciplinary Program) Course: SCIN 261 Fundamental biophysics

	2				
Course Code and Course Title	Thai วทนว ๒๖๑ ชีวฟิสิกส์พื้นฐาน				
	English SCIN 261 Fundamental biophysics				
Number of Credits	2 (2-0-4) (Lecture 2 hours – Laboratory 0 hour/week - Self-Study 4 hours/				
	week)				
Curriculum and Course Type	Program of Study Bachelor's Degree Program in Science and Technology				
	(International Program, Multidisciplinary Program)				
	Course Type Major Course				
Course Coordinator	Assoc. Prof. Wannapong Triampo, Ph.D.				
	Address: Department of Physics, Faculty of Science, Mahidol University				
	272 Rama VI Road, Ratchathewi District, Bangkok 10400, THAILAND				
	Tel. 02-201-5770-1				
	e-mail: wtriampo@gmail.com, wannapong.tri@mahidol.edu				
Semester/Year of Study	Academic Year 2022 First Semester (1/2022) / Second Year				
Prerequisite	None				
Co-requisite	None				
Day/Time/Study Site Location	Thursday / 10.30-12.30				
	Faculty of Science, Mahidol University, Salaya Campus (ONLINE)				
Date of Latest Revision	July 2022				

Course Learning Outcomes (CLOs)

After successful completion of this course, students will be able to:

- After successful completion of this course, students will be able to:
- 1) CLO1 Explain concepts and principles of biophysical systems
- 2) CLO2 Elaborate a model of a biophysical phenomena
- 3) CLO3 Solve the mathematics necessary to construct a model of a biophysical phenomena
- 4) CLO4 Critique the results of a model of a biophysical phenomena
- 5) CLO5 Apply models to solve problems and applications

Course Description:

Biophysics concepts. Molecular and cellular aspects of biological systems. Physics principles of biological molecules, living systems and life processes. Neuro-biophysics. Mathematical, statistical and analytical approaches for quantitative study of living systems and life processes

Credit hours / trimester

Lecture	Additional class	Laboratory/field trip/internship	Self- study	
(Hours)	(Hours)	(Hours)	(Hours)	

School of Bioinnovation and Bio-based Product Intelligence (SCIN) Program in Bioinnovation (International Program, Multidisciplinary Program) Course: SCIN 261 Fundamental biophysics Degree ☑ Bachelor □ Master □ Doctoral Faculty of Science

30 hours	-	60 hours
(2 hours x 15 weeks)		(4 hour/ 15 weeks)

Number of hours that the lecture provides individual counseling and guidance

1 hour / week or student requirement during prescribed date and time

Evaluation of the CLOs

Learning Measurement and Evaluation

A. Formative Assessment

Quiz & feedback for all CLOs with weight 40% (of total weight)

B. Summative Assessment

(1) Evaluation Methods and Weight

Course Learning Outcomes	Evaluat	Weight		
	Class Attendance, Participation and Behavior in Class	Written Exam	Class Project Executed without Plagiarism	(%)
CLO1	5%	10%	-	15%
CLO2	5%	10%	-	15%
CLO3	5%	10%	15%	30%
Total	15%	30%	15%	60%

Note: Students have the right to request a review of a grade and appeal evaluation decisions

(Mahidol University Disciplinary Measures 2010)

Measurement and evaluation

After completion of the evaluation process each student is assigned a criterion-referenced grade (as shown in the table below). Evaluation and achievement will be justifying according to Faculty and University code, conducted by grading system of A, B+, B, C+, C, D and F. To pass this course, student must earn a grade of a least D.

The tentative Grade evaluation

Total Percentage of Evaluation	Below 50	50-54.99	55-59.99	60-64.99	65-69.99	70-74.99	75-79.99	80-100
Grade	F	D	D+	С	C+	В	B+	А

Teaching staff:

Code	Name	Email
WT	Wannapong Triampo	wtriampo@gmail.com,
	R3/1- SC 3 Building N (MUSC-Salaya)	wannapong.tri@mahidol.edu

School of Bioinnovation and Bio-based Product Intelligence (SCIN) Program in Bioinnovation (International Program, Multidisciplinary Program) Course: SCIN 261 Fundamental biophysics

Teaching Schedule 1st Semester of Academic Year 2022

Week	Торіс		Hou	ırs	Teaching	Instructor
		Lect ure	Labo a-	Self- study	methods/ multimedia	
1		0	tory	•		
1 10Aug	Introduction of course discipline and class orientation. What is Biophysics?	2	0	4	Active lecture	Wannapong Triampo
2 17 Aug	What is Biophysics?	2	0	4	Active lecture	Wannapong Triampo
3 24 Aug	Molecular and cellular aspects of biological systems.	2	0	4	Group discussion Active lecture	Wannapong Triampo
4 31 Aug	Molecular and cellular aspects of biological systems.	2	0	4	Active lecture	Wannapong Triampo
5 7 Sep	Physics principles of biological molecules, living systems and life processes.	2	0	4	Active lecture	Wannapong Triampo
6 17 Sep	Physics principles of biological molecules, living systems and life processes.	2	0	4	Group discussion Active lecture	Wannapong Triampo
7 21 Sep	Physics principles of biological molecules, living systems and life processes.	2	0	4	Active lecture	Wannapong Triampo
8 28 Sep	Physics principles of biological molecules, living systems and life processes.	2	0	4	Active lecture	Wannapong Triampo
9 5 Oct	Midterm examination	1	11			
10 12 Oct	Neuro-biophysics.	2	0	4	Group discussion Active lecture	Wannapong Triampo
11 19 Oct	Neuro-biophysics.	2	0	4	Group discussion Active lecture	Wannapong Triampo
12 26 Oct	Mathematical, statistical and analytical approaches for quantitative study of living systems and life processes.	2	0	4	Group discussion Active lecture	Wannapong Triampo

Degree 🗹 Bachelor 🗆 Master 🗆 Doctoral Faculty of Science

School of Bioinnovation and Bio-based Product Intelligence (SCIN) Program in Bioinnovation (International Program, Multidisciplinary Program) Course: SCIN 261 Fundamental biophysics

Week	Торіс	Hours		ırs	Teaching	Instructor
		Lect	Labo	Self-	methods/	
		ure	a-	study	multimedia	
13 2 Nov	Mathematical, statistical and analytical approaches for quantitative study of living systems and life processes.	2	0	4	Active Lecture, Group discussion	Wannapong Triampo
14 9 Nov	Mathematical, statistical and analytical approaches for quantitative study of living systems and life processes.	2	0	4	Active Lecture, Group discussion	Wannapong Triampo
15 16 Nov	Applications of biophysics	2	0	4	Active Lecture, Project-based learning	Wannapong Triampo
16 23 Nov	Applications of biophysics	2	0	4	Active Lecture, Project-based learning	Wannapong Triampo
17 3 Dec	Final examination					

Teaching Materials and Resources

Rodney Cotterill (2011). Biophysics: An Introduction. John Wiley & Sons;