

TQF 3 Course Specification

Section 1 General Information

1. Course Code and Course T	ītle		วทคม ๒๖๒ หลักการเคมีวิเคราะห์ SCCH 262 Fundamental Analytical Chemistry					
2. Number of Credits	2 (2 - 0	- 4)	(Theory 3 hours	s Practice 0 hour Self-study 6 hours/week)				
3. Curriculum and Course Ty	pe							
3.1 Name of curriculum		Underg	graduate level (In	ternational Program)				
3.2 Type of Course		Specific	c course					
4. Course Coordinator and In	structor	r						
4.1 Course coordinator	Dr. Tinr	nakorn Ti	iensing					
	Departr	ment of	Chemistry	Faculty of Science				
	Phone:	02-2015	110	email: tinnakorn.tie@mahidol.ac.th				
4.2 Instructor	Dr. Tinr	nakorn Ti	iensing					
	email: <u>t</u>	tinnakorr	n.tie@mahidol.ac.	<u>th, tinnakorn.tie@mahidol.edu</u>				
5. Semester / Class Level								
5.1 Semester	1 st Sem	ester / 2	2 nd year					
5.2 Number of Students	Approx	imately (60 students					
6. Pre-requisite	SCCH 1	52 / SCC	CH 161 / General	Chemistry Course				
7. Co-requisite	none							
8. Study Site Location	Salaya	Campus	Faculty of Scier	nce				
9. Date of Preparation/Latest	Revisio	n of the	e Course Speci [.]	fication <mark>4 July 2023</mark>				

Degree 🗹 **Bachelor** 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

Section 2 Goals and Objectives

1. Course Goals

After completion of this course, student will be able to understand principle knowledge and theories in fundamental analytical chemistry, spectroanalytical chemistry, electrochemistry and basic statistics related to analytical chemistry. Student should be able to apply quantitative analysis concepts to their upper-level courses.

2. Objectives of Courses

2.1 Course Objectives

After completion of this course, student will be able to::

- 1) Understand principle in fundamental analytical chemistry in the following topics; fundamental analytical chemistry and validation analytical method, reagents and sample preparation, error of the analysis and data evaluation using basic statistics, calculation concentration of the solution, calibration methods, volumetric and gravimetric analysis, fundamental of spectroanalytical chemistry (molecular absorption-emission spectrophotometry), potentiometry, ion-selective electrode and pH measurement, acid-base equilibrium and buffer concept and electrochemistry techniques
- 2) Choose concentration units for preparing reagent solutions
- 3) Apply knowledge to solve analytical problems or related filed problems

2.2 Course-Level Learning Outcomes: CLOs

After completion of this course, student should be able to:

- 1) CLO1 Describe principle in fundamental analytical chemistry in the following topics correctly; fundamental analytical chemistry and validation analytical method, reagents and sample preparation, error of the analysis and data evaluation using basic statistics, calculation concentration of the solution, calibration methods, volumetric and gravimetric analysis, fundamental of spectroanalytical chemistry (molecular absorption-emission spectrophotometry), potentiometry, ion-selective electrode and pH measurement
- 2) CLO2 Explain volumetric (titration methods) and gravimetric (precipitation methods) analysis, validation of analytical method, solution and sample preparation, error of the analysis correctly
- 3) CLO3 Demonstrate a use of concentration units for preparing reagent solutions and the analyte quantity in the sample appropriately
- 4) CLO4 Classify and clarify basic spectrophotometry, acid-base equilibrium and buffer concept and electrochemistry techniques correctly
- 5) CLO5 Integrate apply fundamental analytical chemistry knowledge gained to solve analytical and related field problems

Degree **I** Bachelor □ Master □ Doctoral Faculty of Science Department of Chemistry

Section 3 Course Description and Implementation

1. Course Description

บทนำหลักการเคมีวิเคราะห์ การเตรียมสารละลายและตัวอย่าง ความคลาดเคลื่อนของการวิเคราะห์ การวิเคราะห์ข้อมูล และสถิติพื้นฐานสำหรับเคมีวิเคราะห์ หน่วยของความเข้มข้นและการคำนวณ การตรวจสอบความใช้ได้ของวิธี วิธีการเทียบ มาตรฐาน การวิเคราะห์เชิงปริมาณโดยเทคนิคการไทเทรต การวิเคราะห์เชิงน้ำหนัก บทนำการการวิเคราะห์ทางเคมีเชิงแสง สเปกโทรโฟโตเมทรีของการดูดกลืน-คายแสงของโมเลกุล โพเทนทิโอเมทรี อิเล็คโตรดแบบตัวเลือกไอออนและการวัดพีเฮช

An introduction to fundamental analytical chemistry; preparations of reagents and samples; error of the analysis; data analysis and basic statistics for analytical chemistry; concentration units and calculations; method validation; calibration methods; the volumetric analysis by titration methods; the gravimetric analysis; an introduction to spectroanalytical chemistry (molecular absorption-emission spectrophotometry); potentiom-etry: ion-selective electrode and pH measurement

2. Number of Hours per Semester

Lecture (hour)	Practical Laboratory (hour)	Self-study (hour)
30	0	60

3. Number of Hours per Week for Individual Advice

1 hour/week depends on studying topic which can be arranged by instructor via e-mail or other communication system.

Degree **I** Bachelor □ Master □ Doctoral Faculty of Science Department of Chemistry

Section 4 Development of Students' Learning Outcomes

1. A brief summary of the knowledge or skills expected to develop in students; the course-level expected learning outcomes (CLOs).

By the end of the course, students who successfully complete the course will be able to:

- CLO1 Describe principle in fundamental analytical chemistry in the following topics correctly; fundamental analytical chemistry and validation analytical method, reagents and sample preparation, error of the analysis and data evaluation using basic statistics, calculation concentration of the solution, calibration methods, volumetric and gravimetric analysis, fundamental of spectroanalytical chemistry (molecular absorption-emission spectrophotometry), potentiometry, ion-selective electrode and pH measurement
- 2) CLO2 Explain volumetric (titration methods) and gravimetric (precipitation methods) analysis, validation of analytical method, solution and sample preparation, error of the analysis correctly
- 3) CLO3 Demonstrate a use of concentration units for preparing reagent solutions and the analyte quantity in the sample appropriately
- 4) CLO4 Classify and clarify basic spectrophotometry, acid-base equilibrium and buffer concept and electrochemistry techniques correctly
- 5) CLO5 Integrate apply fundamental analytical chemistry knowledge gained to solve analytical and related field problems

2. How to organize learning experiences to develop the knowledge or skills stated in number 1 and how to measure the learning outcomes

	Teac	hing a	nd lea	arning		Learnir	ng out	come	es
Course Code	experi	ence r	nanag	gement	measurements			-	
SCCH 262 Fundamental Analytical Chemistry	Lecture	Classroom exercise	Assignment / Home work	Self-study / Problem based learn- ing	Quiz	Evaluate from report home work	Solving exercise	Midterm examination	Final examination
CLO1 Describe principle in fundamental analytical chemistry in the following topics correctly; funda- mental analytical chemistry and validation analyti- cal method, reagents and sample preparation,	~	~		~	*		*	*	×

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

Course Code		Teaching and learning experience management				Learnir meas	ig out surem		25
SCCH 262 Fundamental Analytical Chemistry	Lecture	Classroom exercise	Assignment / Home work	Self-study / Problem based learn- ing	Quiz	Evaluate from report home work	Solving exercise	Midterm examination	Final examination
error of the analysis and data evaluation using basic statistics, calculation concentration of the so- lution, calibration methods, volumetric and gravi- metric analysis, fundamental of spectroanalytical chemistry (molecular absorption-emission spectro- photometry), potentiometry, ion-selective elec- trode and pH measurement									
CLO2 Explain volumetric (titration methods) and gravimetric (precipitation methods) analysis, vali- dation of analytical method, solution and sample preparation, error of the analysis correctly	~	~		~	×		×	×	×
CLO3 Demonstrate a use of concentration units for preparing reagent solutions and the analyte quantity in the sample appropriately	~	~	~	~	×	×	×	×	×
CLO4 Classify and clarify basic spectrophotome- try, acid-base equilibrium and buffer concept and electrochemistry techniques correctly	~			~					×
CLO5 Integrate apply fundamental analytical chemistry knowledge gained to solve analytical and related field problems	~		~	~		×		×	×

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

Section 5 Lesson Plan and Evaluation

1. Lesson Plan

		Number	of hours		
Week	Topics/Details	Classroom	Practice	Teaching activities/	Instructors
		sessions	sessions	media	
1	(1) Introduction to analyti-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	cal chemistry, Sampling and			(1) Lecture	
	sample preparation Errors in			(2) Problems solving	
	Analysis			(3) Demonstrate using	
				excel program	
				Teaching media	
				(1) PowerPoint slides	
				(2) Spreadsheet soft-	
				ware	
2	(2) Data evaluation & Using	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	Excel in Data Analysis,			(1) Lecture	
	Method Validation			(2) Problems solving	
				(3) Demonstrate using	
				excel program	
				Teaching media	
				(1) PowerPoint slides	
				(2) Spreadsheet soft-	
				ware	
3	(3) Concentration systems	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	and preparation reagent so-			(1) Lecture	
	lutions			(2) Problems solving	
				Teaching media	
				(1) PowerPoint slides	
4	(4) Gravimetric and volu-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	metric analysis			(1) Lecture	
				(2) Problems solving	
				Teaching media	
				(1) PowerPoint slides	
5	(5) Titration methods and	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	reactions of the titration			(1) Lecture	
				(2) Problems solving	
				Teaching media	
				(1) PowerPoint slides	

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

	Number of h		of hours		
Week	Topics/Details	Classroom	Practice	Teaching activities/	Instructors
		sessions	sessions	media	
6	(5) Titration methods and	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	reactions of the titration			(1) Lecture	
				(2) Problems solving	
				Teaching media	
				(1) PowerPoint slides	
7	(6) Application of the titra-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	tion methods			(1) Lecture	
				(2) Problems solving	
				(3) Assignments	
				Teaching media	
				(1) PowerPoint slides	
8	Midterm examination	-	-	Written examination	
9	(7) Acid-base equilibrium	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	and buffer concept			(1) Lecture	
				(2) Problems solving	
				Teaching media	
				(1) PowerPoint slides	
10	(7) Acid-base equilibrium	2	0	Teaching activities	Dr. Tinnakorn Tiensing
10	and buffer concept	-	Ű	(1) Lecture	
				(2) Problems solving	
				(3) Assignments	
				Teaching media	
				(1) PowerPoint slides	
11	(8) Introduction to spectro-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	analytical chemistry (Beer's			(1) Lecture	
	law)			(2) Discussion	
				Teaching media	
		_	_	(1) PowerPoint slides	
12	(9) Molecular absorption-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	emission spectrophotome-			(1) Lecture	
	try			(2) Discussion	
				Teaching media	
				(1) PowerPoint slides	
13	(9) Molecular absorption-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
1.5	emission spectrophotome-	2	0	(1) Lecture	
	try, instrumentation and its			(2) Discussion	
	application			(3) Problem solving	

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

		Number	of hours		
Week	Topics/Details	Classroom	Practice	Teaching activities/ media	Instructors
		sessions	sessions	media	
				Teaching media	
				(1) PowerPoint slides	
14	(10) Introduction to elec-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	trochemistry technique			(1) Lecture	
				(2) Discussion	
				Teaching media	
				(1) PowerPoint slides	
15	(10) Introduction to elec-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	trochemistry technique: Po-			(1) Lecture	
	tentiometry			(2) Discuss	
				(3) Assignments	
				Teaching media	
				(1) PowerPoint slides	
16	(11) Introduction to elec-	2	0	Teaching activities	Dr. Tinnakorn Tiensing
	trochemistry technique: Ion			(1) Lecture	
	selective electrode and pH			(2) Problems solving	
	measurement				
				Teaching media	
				(1) PowerPoint slides	
17	Final examination	-	-	Written exam	
	Total	30	0		

2. Evaluation of the CLOs

2.1 Measurement and Evaluation of learning achievement

a. Formative Assessment

The formative assessment methods for improving learning skill in which evaluation results are not included in the final score after completion the course are:

- Ask questions in the classroom
- Demonstrate examples for problem solving in the related topics of studying

b. Summative Assessment

(1) Tool and weight for measurement and evaluation

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

			ning ou asuren	itcomes		Weight
CLO	Quiz	Evaluate from report / home work / as- signment	Solving exercise	Midterm examination: Written exam	Final examination: Written exam	(percent)
CLO1 Describe principle in fundamental analytical chemistry in the following topics correctly; fundamental analytical chemistry and validation analytical method, reagents and sample preparation, error of the analysis and data evaluation using basic statistics, calculation concentration of the solution, calibration methods, vol- umetric and gravimetric analysis, fundamental of spec- troanalytical chemistry (molecular absorption-emission spectrophotometry), potentiometry, ion-selective elec- trode and pH measurement	3		4	10	10	27
CLO2 Explain volumetric (titration methods) and gravi- metric (precipitation methods) analysis, validation of an- alytical method, solution and sample preparation, error of the analysis correctly	2		3	10	5	20
CLO3 Demonstrate a use of concentration units for pre- paring reagent solutions and the analyte quantity in the sample appropriately	5	5	3	10	5	28
CLO4 Classify and clarify basic spectrophotometry, acid- base equilibrium and buffer concept and electrochemis- try techniques correctly					10	10
CLO5 Integrate apply fundamental analytical chemistry knowledge gained to solve analytical and related field problems		5		5	5	15
Total	10	10	10	35	35	100

(2) Grading policy

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

Criteria and conditions for measurement and evaluation are to be enforced in accordance with Mahidol University Regulation on Diploma and Undergraduate Study and recently Announcement, the Faculty of Science on Undergraduate Study, by using symbols showing results with assigned scores as shown in the table:

Score(percentage)	Symbols		
80 - 100	A		
<mark>70 – 79</mark>	B+		
<mark>65 – 69</mark>	B		
<mark>60 – 64</mark>	C+		
<mark>55 – 59</mark>	C		
<mark>50 – 54</mark>	D+		
<mark>45 – 49</mark>	D		
<mark>0 – 44</mark>	F		

Symbol with D means pass in this course.

(3) Re-examination (if any)

Follow the Announcement, the Faculty of Science on Undergraduate Study on Re-examination which can be done in the following conditions;

- Student received F or U
- Student taken that course fail less than 15 students, and
- That course would not open in the summer semester.

3. Student Academic Appeal

Students may submit formal complaint or academic appeal directly to

International Education and Administration Unit, Division of Salaya Campus

Room SC1-116, SC1-Building, Faculty of Science (Salaya Campus), Mahidol University

999 Phuttamonthon 4 Road, A. Phuttamonthon, Nakhon Pathom 73170, Thailand

E-mail: scsim@mahidol.ac.th; Phone: +66 2 4419820 ext. 1199

If it considered that a case exists, the matter will be investigated in accordance with the procedures, and the complainant informed of the outcome.

Section 6 Teaching Resources

1. Required Texts and Main Documents

- 1) Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. Vogel's textbook of quantitative chemical analysis, Essex (UK): Pearson Education Limited, **2000** (or other years).
- 2) SKOOG, D.A.; WEST D.M and HOLLER F.J, Fundamentals of analytical chemistry, 9th ed., **2014**.
- 3) Skoog, D. A.; West, D. M. and Holler. J. Fundamental of Analytical Chemistry (7th ed.), Suanders College Publishing, **1997.**
- 4) Daniel C. Harris. Quantitative Chemical Analysis, 8th ed., **2010**.
- Kellner, R.; Mermet, J. M.; Otto, M.; Valcarcel, M; Widmer, J. M. Analytical Chemistry: A Modern Approach to Analytical Science, 2nd Edition, Wiley-VCH Verlag Gmbh & Co. KGaA, Weiheim, 2004.
- 6) Menham, J.; Denney, R. C. and Thomas, M. Vogel's textbook of Quantitative Chemical Analysis. PRENTICE HALL, Pearson education Limited, Essex, **2000**.
- 7) Miller, J. C. and Miller, J. N. Statistics for Analytical Chemistry (2nd Edition) Ellis Horwood Limited, Sussex, **1998**.
- 8) Wang, J. Electroanalytical Chemistry, John Wiley & Son Inc., New York, 2006.
- 9)

2. Suggested Materials

- 1) All teaching documents
- 2) Books in Analytical Chemistry
- 3) Websites; http://www.rsc.org/

3. Other Resources (if any) none

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

Section 7 Evaluation and Improvement of Course Implementation

1. Strategy for Course Effectiveness Evaluation by Students

On-line evaluation form (i.e., instructor/lecturer and overall of the course) can be done by student which is easily assessed by the internet. Contents of the evaluation consist of topics, management, grading evaluation, satisfaction of the course and method usage and teaching method of the course.

2. Strategy for Teaching Evaluation

Skill, knowledge, teaching strategy and learning media in that course can be evaluated by student and also co-course instructor.

3. Teaching Improvement

Teaching Improvement methods can be done by meeting/seminar all lecturers in the course for improving teaching and learning methods that will be applied in the next academic year from all sources of information such as;

- grading results
- evaluation of the subject; teaching method / student learning
- recording from lecturer on performance and behavior student class

4. Verification Standard of Learning Outcome for the Course

The verification processes will be conducted by instructors based on student score, grading system and course evaluation results in that course for revision and verification standard LOs for the course.

5. Revision Process and Improvement Plan for Course Effectiveness

At the end of academic year, course instructor will summaries and do the report for teaching and subject evaluation results and information in the form of TQF.5 to the program administrative committee for future vision and improvement plan.

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

Appendix

Concordance between Specific Course and Program

Table 1 Relations between the course and the PLOs

Course name	PLOs							
Fundamental Analytical Chemistry	PLO1 PLO2 PLO3 PLO4 PLO5 PLO6							
Course code SCCH 262								

<u>**Remarks**</u>: Show the level of the course management with the symbols I, R, P, and M. This must correspond to the curriculum mapping written in the TQF2.

Table 2 Relations between CLOs and PLOs

			PLC)s		
Course code SCCH 262	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CLO1 Describe principle in fundamental						
analytical chemistry in the following topics						
correctly; fundamental analytical chemistry						
and validation analytical method, reagents						
and sample preparation, error of the analy-						
sis and data evaluation using basic statis-						
tics, calculation concentration of the solu-						
tion, calibration methods, volumetric and						
gravimetric analysis, fundamental of spec-						
troanalytical chemistry (molecular absorp-						
tion-emission spectrophotometry), potenti-						
ometry, ion-selective electrode and pH						
measurement						
CLO2 Explain volumetric (titration meth-						
ods) and gravimetric (precipitation meth-						
ods) analysis, validation of analytical						
method, solution and sample preparation,						
error of the analysis correctly						
CLO3 Demonstrate a use of concentration						
units for preparing reagent solutions and						
the analyte quantity in the sample appro-						
priately						
CLO4 Classify and clarify basic spectropho-						
tometry, acid-base equilibrium and buffer						

Degree 🗹 Bachelor 🗌 Master 🗌 Doctoral Faculty of Science Department of Chemistry

			PLC)s		
Course code SCCH 262	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
concept and electrochemistry techniques						
correctly						
CLO5 Integrate apply fundamental analyti-						
cal chemistry knowledge gained to solve						
analytical and related field problems						

Remarks:

a. Each CLO should clearly correspond to the PLO at the SubPLO level to show a clear connection.

b. Describe the PLOs and SubPlos only referred to in the course in "<u>Table 3</u> PLOs that the course is responsible for".

PLOs	Sub PLOs
PLO1	1.1
	1.2
PLO2	2.1
	2.2
PLO3	3.1

Table 3 Description of Program Learning Outcomes (PLO) and sub PLOs of your responsible course

3.2