SCMA 259 Linear Algebra

First Semester Academic Year 2023-2024
Faculty of Science, Mahidol University

Student Groups	Materials Science and Nano Engineering, Bioresources and Environmental Biology,
and Industrial Mathematics	
Class Schedule	Thursday at 9:00-12:00
Instructors	Dr. Piyanan Pasom
	Department of Mathematics, Faculty of Science, Mahidol University
	E-mail: piyanan.pas@mahidol.ac.th Tel. 02-201-5340

Course Description

Vector spaces, Linear transformations, Inner product spaces, projections on to subspaces, Least squares, Eigenvalues and eigenvectors, Diagonalization and Jordan forms, Complex vector spaces, Singular value decomposition and the pseudoinverse, Systems of linear differential equations.

Grading Policy

Student evaluation is in accordance with the rules and regulations of the Faculty of Science, Mahidol University. Letter grades of A, B+, B, C+, C, D+, D, and F will be evaluated according to the student's score.

Score consists of:	Class Attendance	5%	Midterm Exam	35%	Quiz	10%
	Assignments	15%	Final Exam	35%		

All students are required

To come to class on-time and have an attendance record of 80% for the whole course. Otherwise students will not be allowed to take the examination.

- To dress properly. Otherwise students will not be allowed to sit in the class.

Week	Topic/Details	Number of hours		Teaching activities/ media	Instructors
		Classroom sessions	Practice sessions		
1	System of linear equations, Gauss-Jordan elimination	3	0	Teaching method: Interactive lecture, effective questioning, formative assessment, problem solving, problem based activities Media: lecture notes, individual assignments	Dr. Piyanan Pasom
2	Vector spaces and Subspaces, Linear Independence,	3	0		
3	Span, Basis and Dimension	3	0		
4	Fundamental subspaces of matrices	3	0		
5	Fundamental subspaces of matrices (continued) Linear Transformations - Basic Definition and examples	3	0		
6	- Matrices Representation for Linear Transformations Scalar Product and Orthogonality in the Euclidean space \mathbb{R}^{n}	3	0		
7	- Orthogonal subspaces	3	0		
8	- Projections onto subspaces, - Least Squares Problems	3	0		
9	Midterm examination				
10	Inner product spaces - Basic definitions and its properties	3	0		
11	- Orthogonal and orthonormal bases	3	0		

| Week | Topic/Details | | Number of hours | | Teaching
 activities/media |
| :---: | :--- | :---: | :---: | :--- | :--- | Instructors

Textbooks

1. Howard Anton and Chris Rorres. Elementary Linear Algebra with Applications. 10th Ed. New York: Wiley. 2010.
2. Steve Leon, Linear Algebra with Applications, 8th Ed., Pearson, 2009
