SCBC322 Course Syllabus

Module B: Cell and molecular medicine

SCBC 322: Laboratory Rotation in Cell and Molecular Medicine 3 (1-4-4)

Short term research projects, laboratory techniques related to biochemical research, introduction to research methodologies in biochemical research

Prerequisite: None

Date & time: Tuesday (8:30-12:30)

Course coordinator: Dr. Nattawadee Panyain

Course Objectives: This course aims to provide knowledge and abilities as follows:

- 1. How to search for research background in cell and molecular medicine from various scientific databases.
- 2. How to plan and design basic experiments in cell and molecular medicine.
- 3. Basic principle of techniques used in cell and molecular medicine research
- 4. How to properly use basic equipment used in cell and molecular medicine research
- 5. Experience of working and collaborating with team members

Week	Date	Торіс	Hours		Instructor
			Lecture	Lab	Instructor
1	Jan 3 rd 2025	Introduction	1	-	NP
1	Jan 5 th 2025	Deadline for lab rotation 1 selection (report your selection to NP)	-	-	NP
2-6	Jan 6 th - Feb 7 th 2025	Lab rotation 1 and presentation	1	25	BC staffs
6	Feb 7 th 2025	Deadline for rotation 2 selection and report for rotation 1	-	-	NP
7-11	Feb 10 th - Mar 14 th 2025	Lab rotation 2 and presentation	1	25	BC staffs
11	Mar 14 th 2025	Deadline for rotation 3 selection and report for rotation 2	-	-	NP
12- 17*	Mar 17 th - April 25 th 2025	Lab rotation 3 and presentation	1	25	BC staffs
17	May 2 nd 2025	Report due for rotation 3	-	-	NP
		Total	4	75	

Course outline

*Week 15 is the Songkran holiday week (April 14th 2025 - April 18th 2025).

- Students are required to take 3 lab rotations (<u>mandatory rotation</u> meaning that students are required to rotate through 3 different labs).
- It is the student's responsibility to contact the PI for the lab availability in each rotation slot.

Teaching Methods

Students learn and acquire knowledge by

- 1. Choosing a project from research abstracts provided by BC staffs
- 2. Reading materials assigned by their project advisors
- 3. Performing literature review
- 4. Performing research experiments
- 5. Communication with their peers in the laboratory
- 6. Discussing results/research literatures with their advisors
- 7. Analyzing and summarizing the results
- 8. Presenting their research work
- 9. Writing a scientific report

Teaching Media

- 1. Project abstracts
- 2. Review and research articles
- 3. PowerPoint presentation

Measurement and Evaluation of Student Achievement

25%
5%
3%
25%
5%
3%
25%
5%
3%
1%
100%

Grading System: A-F with scores higher than 80 for A. The rest will be determined according to score distribution (by curve)

Course Evaluation

- 1. Evaluate students' achievement as described in "Measurement and Evaluation of Student Achievement."
- 2. Evaluate students' satisfaction towards teaching and learning of the course using a questionnaire.

References

- Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd Ed. New York: Cold Spring Harbor Laboratory, Cold Spring Habor Laboratory Press; 1989.
- 2. Ninfa AJ, Ballou DP. Fundamental Laboratory Approaches for Biochemistry and Biotechnology. Fitzgerald Science Press; 1998.

Instructors

Staffs from the Department of Biochemistry Faculty of Science, Mahidol University

Course Coordinator

Dr. Nattawadee Panyain Department of Biochemistry, Faculty of Science, Mahidol University Phone: 0-2201-5608 Email: <u>nattawadee.pan@mahidol.ac.th</u>