

Course Syllabus

- 1. Subject: SCBM 375 Microscopy and Bioimaging
- 2. Credit: 2 (1-2-3)

3. Instructor

3.1 Course Coordinator:

Asst. Prof. Dr. Worawit Suphamungmee*	Asst. Prof. Dr. Monsicha Somrit
Asst. Prof. Dr. Morakot Sroyraya	Assoc. Prof. Dr. Rapeepun Vanichviriyakit
Assoc. Prof. Dr. Krai Meemon	Dr. Jinchutha Duangdara

*Course coordinator: Department of Anatomy (B118; Phayathai)

Contact: 02-201-5409, Email: worawit.sup@mahidol.edu

- 3.2 Supporting Staff: Mr. Sukit Meesombat
- 4. Semester/Academic Year: 2/2024
- 5. Pre-requisite/Co-requisite: SCBM 214 Structure of Cell and Tissue
- 6. Study Location: Faculty of Science, Mahidol University
- 7. Course Description:

Microscopy; Optical microscope; Immunohistochemistry; Electron microscope; Biological imaging

8. Total Hours:

Lecture (hours)	Laboratory (hours)	Self-study (hours)	
15	30	45	

9. Objectives:

- 9.1 Describe principle and applications of microscopy.
- 9.2 Explain major components and basic operations of light and electron microscopes.
- 9.3 Explain routine procedures of specimen preparations in the microscopy techniques.
- 9.4 Discuss the advantage of biological imaging methods including the quality of the microscopic images.

10. Course schedule:

Monday	ay Lecture Room: L03		3 Laboratory: MDL2, AN1-110, B109/1, B200, P113 [see a full s	schedule]
Week	Dates	Times	Topics	Lecturers
1	Jan 6	13.00-14.00	Lecture 1: Light microscopy (LM): Basic principle of LM and image	Worawit
			formation	
		14.00–15.00	Lecture 2: Properties of light and parts of light microscope	Worawit
		15.00-16.00	Lecture 3: Dark field microscopy, phase contrast microscopy and	Morakot

differential interference contrast (DIC) microscopy

2	Jan 13	13.00-14.00	Lecture 4: Preparation technique for light microscopy: Paraffin	Morakot
			technique and frozen tissue preparation	
		14.00–15.00	Lecture 5: Preparation technique for light microscopy: General	Morakot
			staining and special staining	
3	Jan 20	13.00-15.00	Lab 1: Paraffin technique 1 - Tissue selection, auto processing, and	Worawit
			embedding [B109/1]	Rapeepun Morakot
		15.00-17.00	Lab 2: Paraffin technique 2 – Tissue sectioning and mounting [AN110]	Jinchutha
4	Jan 27	13.00-15.00	Lab 3: H&E staining and digital imaging [MDL2]	Worawit
		14.00-17.00	Lab 4: Masson's trichrome staining and digital imaging [MDL2]	Rapeepun
				Morakot Jinchutha
5	Feb 3	13.00-14.00	Lecture 6: Fluorescence microscopy (epifluorescence/inverted fluo-	Monsicha
			rescence)	
		14.00-15.00	Lecture 7: Confocal laser microscopy	Monsicha
		15.00-16.00	Lecture 8: Immunohistochemistry: Immunoperoxidase and immu-	Rapeepun
			nofluorescence techniques	
6	Feb 10	13.00-15.00	Lab 5-6: Immunofluorescence technique: Preparation & staining	Worawit
			methods [MDL2]	Rapeepun
		15.00-17.00	Lab 7-8: Immunoperoxidase technique: Preparation & staining	Monsicha
			methods [MDL2]	Krai
7	Feb 24	13.00-17.00	Lab 9: Digital imaging of the immunofluorescence-stained speci- men [B200] and Digital imaging of immunoperoxidase-	Worawit
			stained specimen [MDL2] – part I	Rapeepun
				Monsicha
				Krai
8	Mar 3	13.00-17.00	Lab 10: Digital imaging of the immunofluorescence-stained speci-	Worawit
			men [B200] and Digital imaging of immunoperoxidase- stained specimen [MDL2] – part II	Rapeepun
				Monsicha
				Krai
9	Mar 10	13.00-14.00	Lecture 9: In situ hybridization technique	Krai
		14.00-15.00	Lecture 10: Fluorescent protein tagging: The beauty of design	Jinchutha
		15.00-16.00	Lecture 11: Live cell imaging: An introduction to super resolution	Jinchutha
			imaging	
10	Mar 17	13.00-15.00	Lecture 10-11: Principle and preparation technique of transmission	Worawit
			electron microscopy	
		15.00-17.00	Lecture 12-13: Principle and preparation technique of scanning	Worawit
			electron microscopy	
11	Mar 24	13.00-15.00	Lab 11: TEM specimen preparation [B200]	Worawit
		15.00-17.00	Lab 12: SEM specimen preparation [B200]	Wattapong
				Jirawadee

12	Mar 31	13.00-15.00	Lab 13: Basic operation of TEM [P113]	Worawit
		15.00-17.00	Lab 14: Basic operation of SEM [B200]	Wattapong
				Jirawadee
13	Apr 21	13.00-15.00	Lab 15: Conference: Discussion on techniques & applications [L03]	Worawit
				Rapeepun
				Morakot
				Krai
14	Apr 28	13.00-15.00	Examination	
15	Apr 30	12.00	Submission Due for Lab Report	

Teaching Materials: available in Google Classroom

Google Classroom: https://classroom.google.com/c/NzMyODYwNTlyNTE4 Passcode: igujeec

11. Evaluation:

Summative examination	50%
Individual lab report	25%
Lab presentation (conference)	20%
Class attendance (15 activities)	5%

Final grades are set as follows (total of 100 collective points):

A (80-100); B+ (75-79), B (70-74); C+ (65-69), C (60-64); D+ (55-59), D (50-54); F (0-49)

12. Class Attendance:

Attendance and active participation at each classroom and laboratory session is an essential part of the coursework and part of the final grade. Since laboratory sessions are vital to learning the practical aspects of the techniques presented during the classroom lectures, they are an integral part of this course. One cannot expect to finish the course successfully without attending them all. Unexcused absences are not acceptable. ("Excused absences" are for participation of the university activities, medical and other life-altering events)

13. Laboratory Reports:

Each student is responsible for writing a short laboratory report summarizing each laboratory session and turning it in by the end of the coursework. The report of each practical session should be written in between 1-2 pages long. It should summarize in the student's own words what she/he has learned and worked on during the laboratory. Main writing should cover brief principle and objectives, method & setup, results & discussion, figures, special note & references. It should also include the advantages and disadvantages of each microscopy technique covered and discuss what types of samples are appropriate and why. If there are any images, pictures, drawings etc. they should be titled as "Figure #: <description>", referenced in the main text, and

appended on additional pages. Each page should have 1-inch margins all around, and the font size should be appropriately readable (titles could be larger).

12. References:

Textbooks:

- Bozzola JJ. Russell LD. (1998). Electron Microscopy. 2nd ed. Jones & Bartlett Learning. ISBN-10: 0763701920.
- Chandler DE, Robertson RW. (2008). Bioimaging: Current Concepts in Light and Electron Microscopy. 1st ed. Jones & Bartlett Learning. ISBN-10: 0763738743.
- Mertz, J. (2019). Introduction to Optical Microscopy. 2nd ed. Cambridge: Cambridge University Press. doi:10.1017/9781108552660
- Murphy DB, Davidson MW. (2013). Fundamentals of Light Microscopy and Electronic Imaging. 2nd ed. Wiley-Blackwell. ISBN-10: 047169214X.
- Williams DB, Carter CB. (2009). Transmission Electron Microscopy: A Textbook for Materials Science, Vol. 4 set. 2nd eds. Springer. ISBN: 0387765026.
- Sanderson J. (2019). Understanding Light Microscopy. 1st ed. Wiley. ISBN-10: 0470973757.

External resources:

https://micro.magnet.fsu.edu/primer/anatomy/anatomy.html

https://www.microscopyu.com/

- https://www.olympus-lifescience.com/en/microscope-resource/primer/anatomy/introduction/
- https://www.open.edu/openlearn/science-maths-technology/biology/introduction-microscopy/content-section-0?intro=1