Program Level 🗹 Bachelor 🗆 Master 🗆 Doctor Faculty of Science Department of Mathematics

Course Specification Section 1 General Information 1. Course Code and Title In Thai วทคอ ๑๐๓ คณิตศาสตร์ ๑ SCIM 103 Mathematics 1 In English 2. Number of Credits 4 (4-0-8) Credits (Theory 4 hrs. Practice 0 hrs. Self-Study 8 hrs./week) 3. Curriculum and Course Type 3.1 Program Bachelor of Science in Bioresources and Environmental Biology (International Program) Specific Course \square Compulsory Course \square Elective Course 3.2 Course Type 4. Course Coordinator and Instructor 4.1 Course Responsible Instructor Assoc. Prof. Kornkanok Bunwong Department of Mathematics, Faculty of Science Tel. 02-201-5340 e-mail: kornkanok.bun@mahidol.ac.th 4.2 Instructors 1. Lect. Panyada Sriphathurat Department of Mathematics, Faculty of Science Tel. 02-201-5340 e-mail: sripaturad.pan@gmail.com 2. Assoc. Prof. Kornkanok Bunwong B203/9, Department of Mathematics, Faculty of Science Tel. 02-201-5340 e-mail: kornkanok.bun@mahidol.ac.th 5. Semester/Class Level Second semester/First Year 5.1 Semester 5.2 Number of Students Allowed Approximately 20 Students 5.3 Lecture Room SC1-153 6. Prerequisites None 7. Co-requisites None 8. Date of Preparation/Latest Revision of the Course Specifications 4 January 2025

MU3

Program Level 🗹 Bachelor 🗆 Master 🗆 Doctor Faculty of Science Department of Mathematics

Section 2 Course Goals and Course Description

1. Course Goals

Calculus and matrix algebra are important tools used to describe continuous change and solve complex problems. This introductory course intends to develop students' knowledge in these fundamental areas of mathematics. Moreover, students are trained their communication skills, especially writing, to exchange mathematical knowledge in English.

2. Course Description

เวกเตอร์ เมทริกซ์ ระบบสมการเชิงเส้น ฟังก์ชันและกราฟ ฟังก์ชันอดิศัย ลิมิตและความต่อเนื่อง อนุพันธ์ของฟังก์ชัน อนุพันธ์ โดยปริยายและลอการ์ทึม รูปแบบไม่กำหนดและหลักเกณฑ์โลปีตาล ปฏิยานุพันธ์ และการหาปริพันธ์ เทคนิคการหาปริพันธ์ การ ประยุกต์ที่เกียวข้องกับวิทยาศาสตร์และธุรกิจ

Vectors; matrices; systems of linear equations; functions and their graphs; transcendental functions; limits and continuity; derivatives of functions; implicit and logarithmic differentiation; indeterminate forms and L'Hospital's rule; antiderivatives and integration; techniques of integration; applications to sciences and business-related fields

Section 3 Course Objectives, Course-level Learning Outcomes and Course Implementation

1. Course Objectives

After successful completion of this course, students should be able to:

- 1) Demonstrate understanding of standard practices in calculus and vector algebra
- 2) Solve derivative and integration problems
- 3) Manipulate matrices and systems of linear equations

2. Course-level Learning Outcomes: CLOs

On completion of the course, the students will be able to

(Panyada)

- 1) CLO1 Explain the fundamental concepts of functions and calculus such as limits, continuity, derivatives and integration
- 2) CLO2 Evaluate limits, derivatives, and integrals by using multiple methods
- 3) CLO3 Apply calculus to solve area, science, and business problems

(Kornkanok)

- 4) CLO4 Evaluate limits involving the indeterminate forms and the derivative of complicated functions by using implicit and logarithmic differentiation
- 5) CLO5 Apply calculus to curve sketching, optimization problems, and rates of change
- 6) CLO6 Compute standard vectors and matrices properties and operations such as norm, dot product, cross product, and determinant
- 7) CLO7 Formulate and solve systems of linear equations from given contexts

3. How to organize learning experiences to develop the knowledge or skills stated in number 2 and how to measure the learning outcomes

SCIM 103		ng and lear Ice manage	0	Learning outcomes m		asurements	
	Interaction Lecture	Exercise	Problem solving activities	In class activity	Individual assignment	Written exam	
CLO1	\checkmark	\checkmark		x	x		
CLO2	\checkmark	\checkmark	\checkmark	x	x	x	
CLO3	\checkmark	\checkmark	\checkmark	x	x	x	
	Kornkanok						
CLO4	\checkmark	\checkmark	\checkmark	x	x	x	
CLO5	\checkmark	\checkmark	\checkmark	×	×	×	
CLO6	\checkmark	\checkmark	\checkmark	×	×	x	
CLO7	\checkmark	\checkmark	\checkmark	×	x	×	

Program Level 🗹 Bachelor 🗆 Master 🗆 Doctor Faculty of Science

Department of Mathematics

Section 4 Lesson Plan and Evaluation

1. Lesson Plan

Teaching	T (D	Number	of hours	Methods:		
Period	Topic / Details	Theory	Practice	Teaching Media	Instructors	
	08.30-10.30 Relations, functions and their graphs	2	0	Teaching method:	Panyada	
1 06/01/25	10.30-12.30 Vectors in two and three dimensions (geometric description of vectors; vectors in the co- ordinate plane; arithmetic operations on vectors)	2	0	interaction lecture, practice,	Kornkanok	
	08.30-10.30 Transcendental functions	2	0	problem	Panyada	
2 13/01/25	10.30-12.30 Vectors in two and three dimensions (vectors with initial point not at the origin; rules of vector arithmetic; norm of vectors; unit vectors)	2	0	solving activities Media: lecture notes, individual assignment, group	Kornkanok	
3	08.30-10.30 Transcendental functions (cont.)	2	0			Panyada
20/01/25	10.30-12.30 Limits	2	0		Panyada	
4	08.30-10.30 Vectors in two and three dimensions (normalizing a vector; vectors determined by length and angle)	2	0		Kornkanok	
27/01/25	tenstructureassignment10.30-12.30 Vectors in two and three dimensions (Dot product; angle between two vectors; orthogo- nal vectors; orthogonal projections)20	assignment	Kornkanok			
5	08.30-10.30 Limits (cont.)	2	0		Panyada	
03/02/25	10.30-12.30 Vectors in two and three dimensions (Cross product; determinant; scalar triple products)	2	0			Kornkanok
	08.30-10.30 Continuity and Differentiation rules	2	0		Panyada	
6 10/02/25	10.30-12.30 Introduction to systems of linear equa- tions; Matrices and matrix operations; diagonal, tri- angular, and symmetric matrices	2	0		Kornkanok	
7	08.30-10.30 Differentiation rules (cont.)	2	0		Panyada	
17/02/25	10.30-12.30 Gaussian elimination; Gauss-Jordan elimination	2	0		Kornkanok	

Program Level 🗹 Bachelor 🗆 Master 🗆 Doctor Faculty of Science Department of Mathematics

Teaching	Tania (Dataila	Number	of hours	Teaching	
Period	Topic / Details	Theory	Practice	activities/ media	Instructors
8	08.30-10.30 Wrap up	2	0		Panyada
24/02/25	10.30-12.30 Wrap up	2	0		Kornkanok
9	Midterm examination (03/03/25-07/03/25)				
10	08.30-10.30 Antiderivatives and Integration	2	0		Panyada
10/03/25	10.30-12.30 Inverse of a matrix by elementary row operations on an augmented matrix	2	0		Kornkanok
11 17/03/25	08.30-10.30 Techniques of integration (the substitu- tion rule, integration by parts and the tabular method, partial fractions, improper integrals)	ule, integration by parts and the tabular 2 0 Teaching	U U	Panyada	
	10.30-12.30 Determinants; Cramer's Rule	2	0	interaction	Kornkanok
12	08.30-10.30 Techniques of integration (cont.) 2	2	0	lecture, practice, problem solving activities Media:	Panyada
24/03/25	10.30-12.30 Implicit and logarithmic differentiation	2	0		Kornkanok
13	13.00-15.00 Techniques of integration (cont.)	2	0		Panyada
27/03/25 Make up	15.00-17.00 Indeterminate forms and L'Hospital's rule	2	0		
14	08.30-10.30 Area between curves	2	0	lecture notes,	Panyada
31/03/25	10.30-12.30 Applications of differentiation (maximum and minimum values, curve sketching)	2	0	individual assignment, group assignment	Kornkanok
15	13.00-15.00 Applications of integration	2	0		Panyada
03/04/25 Make up	15.00-17.00 Applications of differentiation (optimi- zation problems, rates of change)	2	0		Kornkanok
16	08.30-10.30 Wrap up	2	0		Panyada
21/04/25	10.30-12.30 Wrap up	2	0		Kornkanok
17-18	Final examination (28/04/25-09/05/25)				
	Total	60	0		

* The schedule is tentative and subject to change as appropriate.

2. Plan for Assessment of Expected Course-Level Learning Outcomes (CLOs)

2.1 Measurement and Evaluation of learning achievement

A. Formative Assessment

During a lesson, instructor keeps the question going and monitors students' progress in general. There are also quick quizzes to check the current understanding of individual students.

B. Summative Assessment

(1) Tool and weight for measurement and evaluation

	Evaluation Method))/(aight		
Course learning outcomes	In class	Individual	Written	Weight (%)		
outcomes	activity	assignment	exam	(%)		
		Panyada				
CLO1	8%	10%	14%	32%		
CLO2	8%	12%	14%	34%		
CLO3	8%	12%	14%	34%		
Total 1	24%	34%	42%	100%		
	Kornkanok					
CLO4	4%	4%	10%	18%		
CLO5	4%	4%	10%	18%		
CLO6	10%	10%	12%	32%		
CLO7	8%	8%	16%	32%		
Total 2	26%	26%	48%	100%		
Total	(Fotal 1 + Total 2)/	2	100%		

(2) Grading Rules

After completion of the evaluation process each student is assigned a criterion-referenced grade (as shown in the table below). Evaluation and achievement will be justified according to Faculty and University code, conducted by grading system of A, B+, B, C+, C, D+, D and F.

Department of Mathematics

Total percentage of evaluation	Grade
80 - 100	А
75 – 79	B+
70 – 74	В
60 - 69	C+
50 – 59	С
45 – 49	D+
40 - 44	D
0 – 39	F

(3) Measurement and Evaluation

Performance of the students is evaluated and assessed according to course objectives and learning outcomes. To pass this course, students must earn a grade of at least D.

2.2 Re-examination (if the course allows any.)

None

3. Students' Appeal

Students may submit formal complaint or academic appeal directly to

International Education and Administration Unit, Division of Salaya Campus, Mahidol University.

If it is considered that a case exists, the matter will be investigated in accordance with the procedures, and the complainant informed of the outcome

Section 5 Teaching Resources

1. Required Texts

- 1) Calculus, Early Transcendentals, 9th. Ed., H. Anton, I.C. Bivens, S. Davis, John Wiley & Sons
- 2) Elementary Linear Algebra, 11th Ed., H. Anton, C. Rorres, John Wiley & Sons.

2. Suggested Materials

3. Other Resources (if any)

- 1) https://www.khanacademy.org
- 2) https://www.edx.org
- 3) https://www.coursera.org
- 4) http://tutorial.math.lamar.edu

Section 6 Evaluation and Improvement of Course Implementation

1. Analysis and Evaluation of Course Implementation

A. Data for Analysis

Analysis of students' learning outcomes using student's total percentage of evaluation taken from review of class attendance record, review of on-time assignment submission, review of individual response according to examination rules and regulations, review of turning-in individual work assignment quality, and written examination by the course responsible faculty member and instructors.

B. Course Effectiveness Evaluation

Evaluated by course evaluation by student (Mahidol University E-Evaluation System) and student performance.

2. Revision Process and Improvement Plan for Course Effectiveness

Course responsible faculty member and instructors review course effectiveness in achieving course learning outcomes using outputs from course and instructor evaluation (Mahidol University E-Evaluation System), the results of student evaluation, and formal complaint or academic appeal (if any) to determine further improvement plan.

3. The self-assessment report of the course

Reports on course performance based on MU5 are prepared within 30 days after the end of the semester.

Program Level 🗹 Bachelor 🗆 Master 🗆 Doctor Faculty of Science Department of Mathematics

Appendix

1. Relations between the course and the program

<u>Table 1</u> Relations between the course and the PLOs

			PLOs				
Course Name: Mathematics I	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
SCIM 103							

<u>Table 2</u> Relation between CLOs and PLOs

SCIM 103		PLOs					
		PLO2	PLO3	PLO4	PLO5	PLO6	
CLO1 Explain fundamental knowledge of calculus such as	1.2						
limits, continuity, derivatives and integration							
CLO2 Evaluate limits, derivatives, and integrals by multiple	1.2						
methods							
CLO3 Apply calculus to solve area, science, and business	1.2						
problems							
CLO4 Evaluate limits involving the indeterminate forms and	1.2						
the derivative of complicated functions by using implicit							
and logarithmic differentiation							
CLO5 Apply calculus to curve sketching, optimization prob-	1.2						
lems, and rates of change							
CLO6 Compute standard vectors and matrices properties	1.2						
and operations such as norm, dot product, cross product,							
and determinant							
CLO7 Formulate and solve systems of linear equations	1.2						
from given contexts							

Table 3	PLOs and SubPLOs that	the course is responsible for	~
Table 5	FLOS AND SUDFLOS LITAL	the course is responsible for	

PLOs	SubPLOs
PLO1 Solve biology- and environment-related	1.2 Apply concepts in basic science, including biology,
problems logically and systematically at local, re-	chemistry, mathematics, and physics, logically and
gional and global levels by applying interdiscipli-	systematically necessary for the study of bioresources
nary approaches.	and environmental biology

2. Rubric scoring* TBA

3. Relations between the course and Sustainable Development Goals (SDGs)

netativ	Ship between	the course and sustainable bevelopment
	SDG1	No poverty
	SDG2	Zero Hunger
	SDG3	Good Health and Well – being
\checkmark	SDG4	Quality Education
	SDG5	Gender Equality
	SDG6	Clean Water and Sanitation
	SDG7	Affordable and Clean Energy
	SDG8	Decent Work and Economic Growth
	SDG9	Industry, Innovation and Infrastructure
	SDG10	Reduced Inequalities
	SGD11	Sustainable Cities and Communities
	SDG12	Responsible Consumption and Production
	SDG13	Climate Action
	SDG14	Life Below Water
	SDG15	Life on Land
	SDG16	Peace, Justice and Strong Institutions
	SDG17	Partnerships for the goals